Selection of optimal variants of Gō-like models of proteins through studies of stretching.
نویسندگان
چکیده
The Gō-like models of proteins are constructed based on the knowledge of the native conformation. However, there are many possible choices of a Hamiltonian for which the ground state coincides with the native state. Here, we propose to use experimental data on protein stretching to determine what choices are most adequate physically. This criterion is motivated by the fact that stretching processes usually start with the native structure, in the vicinity of which the Gō-like models should work the best. Our selection procedure is applied to 62 different versions of the Gō model and is based on 28 proteins. We consider different potentials, contact maps, local stiffness energies, and energy scales--uniform and nonuniform. In the latter case, the strength of the nonuniformity was governed either by specificity or by properties related to positioning of the side groups. Among them is the simplest variant: uniform couplings with no i, i + 2 contacts. This choice also leads to good folding properties in most cases. We elucidate relationship between the local stiffness described by a potential which involves local chirality and the one which involves dihedral and bond angles. The latter stiffness improves folding but there is little difference between them when it comes to stretching.
منابع مشابه
Optimal Coding Subgraph Selection under Survivability Constraint
Nowadays communication networks have become an essential and inevitable part of human life. Hence, there is an ever-increasing need for expanding bandwidth, decreasing delay and data transfer costs. These needs necessitate the efficient use of network facilities. Network coding is a new paradigm that allows the intermediate nodes in a network to create new packets by combining the packets recei...
متن کاملMolecular Modeling and Docking Studies on the First Chlorotoxin-Like Peptide from Iranian Scorpion Mesobuthuseupeus (Meict) and SNP Variants of Matrix Methaloproteinase-2 (MMP-2)
Background: MeICT is the first chlorotoxin-like peptide isolated from the Iranian Scorpion Mesobuthus eupeus. Chlorotoxin (CTX) is a neurotoxin that specially binds to (MMP-2) on ma-lignant cells and now is used in treatment of glioma. In the present study, we have used homology modeling to propose the 3D structure of MeICTand analyze its interaction with MMP-2 and its SNP types. Methods:The ...
متن کاملTwo models of inventory control with supplier selection in case of multiple sourcing: a case of Isfahan Steel Company
Selecting the best suppliers is crucial for a company’s success. Since competition is a determining factor nowadays, reducing cost and increasing quality of products are two key criteria for appropriate supplier selection. In the study, first the inventories of agglomeration plant of Isfahan Steel Company were categorized through VED and ABC methods. Then the models to supply two important kind...
متن کاملChevron behavior and isostable enthalpic barriers in protein folding: successes and limitations of simple Gō-like modeling.
It has been demonstrated that a "near-Levinthal" cooperative mechanism, whereby the common Gō interaction scheme is augmented by an extra favorability for the native state as a whole, can lead to apparent two-state folding/unfolding kinetics over a broad range of native stabilities in lattice models of proteins. Here such a mechanism is shown to be generalizable to a simplified continuum (off-l...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 95 7 شماره
صفحات -
تاریخ انتشار 2008